Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Manju Rajeswaran* and Viktor V. Jarikov

Eastman Kodak Company, Research and Development Laboratories, Rochester, NY 146502106, USA

Correspondence e-mail:
manju.rajeswaran@kodak.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
R factor $=0.050$
$w R$ factor $=0.150$
Data-to-parameter ratio $=15.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Tris(quinolin-8-olato)indium(III)

The single-crystal structure of the title compound, [$\operatorname{In}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{3}$], is described. Quinolinolates of the elements of the group IIIB (denoted by $M Q_{3}$), Al, Ga, and In, have been of continuous interest to organometallic and physical chemists, in particular, for the last 50 years. Organic lightemitting diodes (OLEDs) utilizing $G a Q_{3}$ and $\operatorname{In} Q_{3}$, the gallium and indium analogs, respectively, of the most widely used OLED material Al_{3}, were first explored in the early 1980s and continue to be the subject of current research. To the best of our knowledge, the structure reported here is the first-ever facial $M Q_{3}$-type structure, confirmed by singlecrystal X-ray crystallography.

Comment

In 1987, efficient electroluminescence from an organic lightemitting diode (OLED) device using low molecular weight organic materials was first reported (Tang \& Van Slyke, 1987). This device was constructed of two active layers and used the metal-quinolinolate tris(8-hydroxyquinoline)aluminium. This discovery generated renewed interest in metal quinolinolates. The tris-chelate 8 -hydroxyquinoline metal complexes, $M Q_{3}$, can occur in two different geometrical forms, viz. facial or meridional. To date, all published $\mathrm{Al} Q_{3}$ single-crystal structures (including different polymorphs and solvates) and $\mathrm{Ga} Q_{3}$ structures were found to be meridional isomers (Brinkmann et al., 2000; Ul-Haque et al., 1991; Fujii et al., 1996; Wang et al., 1999). Single-crystal structures of facial isomers of $M Q_{3}$-type complexes have been elusive so far. We report here the crystal structure of the title compound, $\operatorname{In} Q_{3},(\mathrm{I})$.

(I)

The molecular structure of $\operatorname{In} Q_{3}$ (Fig. 1) contains a sixcoordinated indium atom. The angles around the In atom indicate approximate octahedral geometry. The average InO and $\mathrm{In}-\mathrm{N}$ distances are 2.108 and $2.261 \AA$, respectively. There is intermolecular $\pi-\pi$ stacking of the ligands (8hydroxyquinolines) in a multidirectional fashion. Such intermolecular stacking was also observed in the $\mathrm{Ga} Q_{3}$ structure (Wang et al., 1999). The ligands in $\operatorname{In} Q_{3}$ are stacked in the unit cell, with interplanar distances in the range 3.406-3.428 \AA, comparable to $3.35-3.41 \AA$ for $\mathrm{Ga} Q_{3}$ (Fig. 2).

Received 3 April 2003

Accepted 25 April 2003 Online 9 May 2003

Figure 1
A view of the molecule of the title compound, (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Part of the crystal structure of $\operatorname{In} Q_{3}$, illustrating the stacking of 8 hydroxyquinoline ligands. Stacking distances between various planes are indicated.

Experimental

$\operatorname{In} Q_{3}$ was synthesized according to established methods (Lytle et al., 1973). In Q_{3} was chemically purified by washing and recrystallization and subjected to vacuum temperature-gradient sublimation three consecutive times until a purity of 99.9% was achieved. The purity was determined by NMR in d_{6}-DMSO. We note that, although the remaining impurities could not be positively characterized, they could consist of different forms, e.g. isomers or polymorphs, of the target compound. $\operatorname{In} Q_{3}$ was sublimed at 0.6 Torr and the temperature was gradually increased from 533 to 573 K over a period of $1-3 \mathrm{~d}$. It was also characterized by HPLC, LC-MS, and ESIMS, showing results consistent with the structure and purity determined by NMR.

Crystal data

$\left[\operatorname{In}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{3}\right]$	$Z=2$
$M_{r}=547.26$	$D_{x}=1.641 \mathrm{Mg} \mathrm{m}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=6.1860(12) \AA$	Cell parameters from 10088
$b=13.436(3) \AA$	reflections
$c=14.725(3) \AA$	$\theta=1.0-26.7^{\circ}$
$\alpha=65.63(3)^{\circ}$	$\mu=1.10 \mathrm{~mm}^{-1}$
$\beta=88.15(3)^{\circ}$	$T=293(2) \mathrm{K}$
$\gamma=83.55(3)^{\circ}$	Needle, yellow
$V=1107.7(4) \AA^{\circ}$	$0.60 \times 0.07 \times 0.06 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
φ and ω scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.517, T_{\text {max }}=0.991$
11360 measured reflections
4647 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.150$
$S=0.74$
4647 reflections
307 parameters

2896 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.112$
$\theta_{\text {max }}=26.8^{\circ}$
$h=-7 \rightarrow 7$
$k=-16 \rightarrow 15$
$l=-18 \rightarrow 14$

Table 1
Selected geometric parameters $\left({ }^{(A},{ }^{\circ}\right)$.

In1-O3	$2.101(4)$	In1-N3	$2.250(5)$
In1-O2	$2.110(4)$	In1-N1	$2.264(5)$
In1-O1	$2.112(4)$	In1-N2	$2.269(4)$
O3-In1-O2	$96.96(17)$	O1-In1-N1	$76.89(17)$
O3-In1-O1	$101.69(17)$	N3-In1-N1	$92.01(17)$
O2-In1-O1	$98.33(17)$	O3-In1-N2	$163.81(17)$
O3-In1-N3	$76.88(16)$	O2-In1-N2	$76.89(16)$
O2-In1-N3	$93.12(18)$	O1-In1-N2	$94.06(17)$
O1-In1-N3	$168.54(17)$	N3-In1-N2	$88.41(17)$
O3-In1-N1	$98.64(17)$	N1-In1-N2	$88.45(17)$
O2-In1-N1	$164.31(16)$		

The quality of the $\operatorname{In} Q_{3}$ crystals was not very good, as indicated by a rather high R_{int} value (0.112). There was a minor twin component in the crystals, which was left untreated. During subsequent refinement, positional parameters of H atoms were calculated geometrically and allowed to ride on the C atoms to which they were bonded. In the final difference Fourier map, deepest hole is $0.93 \AA$ from In1.Data collection: COLLECT (Nonius, 1998); cell refinement: $H K L$ SCALEPACK (Otwinowski \& Minor, 1997); data reduction: HKL DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001) and Materials Studio (Accelrys, 2001); software used to prepare material for publication: SHELXTL.

References

Accelrys (2001). Materials Studio. Accelrys Inc., San Diego, CA, USA. Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Brinkmann, M., Gadret, G., Muccini, M., Taliani, C., Masciocchi, N. \& Sironi, A. (2000). J. Am. Chem. Soc. 122, 5147-5157.

Bruker (2001). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Fujii, I., Hirayama, N., Ohtani, J. \& Kodama, K. (1996). Anal. Sci. 12, 153-154.
Lytle, F. E., Storey, D. R. \& Juricich, M. E. (1973). Spectrochim. Acta Part A, 29, 1357-1369.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Tang, C. W. \& Van Slyke, S. A. (1987). Appl. Phys. Lett. 51, 913-915.
Wang, Y., Zhang, W., Li, Y., Ye, L. \& Yang, G. (1999). Chem. Mater. 11, 530532.

Ul-Haque, M., Horne, W. \& Lyle, S. J. (1991). J. Crystallogr. Spectrosc. Res. 21, 411-417.

