metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Manju Rajeswaran* and Viktor V. Jarikov

Eastman Kodak Company, Research and Development Laboratories, Rochester, NY 14650-2106, USA

Correspondence e-mail: manju.rajeswaran@kodak.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.010 Å R factor = 0.050 wR factor = 0.150 Data-to-parameter ratio = 15.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tris(quinolin-8-olato)indium(III)

The single-crystal structure of the title compound, $[In(C_9H_6NO)_3]$, is described. Quinolinolates of the elements of the group IIIB (denoted by MQ_3), Al, Ga, and In, have been of continuous interest to organometallic and physical chemists, in particular, for the last 50 years. Organic light-emitting diodes (OLEDs) utilizing Ga Q_3 and In Q_3 , the gallium and indium analogs, respectively, of the most widely used OLED material Al Q_3 , were first explored in the early 1980s and continue to be the subject of current research. To the best of our knowledge, the structure reported here is the first-ever facial MQ_3 -type structure, confirmed by single-crystal X-ray crystallography.

Comment

In 1987, efficient electroluminescence from an organic lightemitting diode (OLED) device using low molecular weight organic materials was first reported (Tang & Van Slyke, 1987). This device was constructed of two active layers and used the metal-quinolinolate tris(8-hydroxyquinoline)aluminium. This discovery generated renewed interest in metal quinolinolates. The tris-chelate 8-hydroxyquinoline metal complexes, MQ_3 , can occur in two different geometrical forms, *viz*. facial or meridional. To date, all published Al Q_3 single-crystal structures (including different polymorphs and solvates) and Ga Q_3 structures were found to be meridional isomers (Brinkmann *et al.*, 2000; Ul-Haque *et al.*, 1991; Fujii *et al.*, 1996; Wang *et al.*, 1999). Single-crystal structures of facial isomers of MQ_3 -type complexes have been elusive so far. We report here the crystal structure of the title compound, In Q_3 , (I).

The molecular structure of InQ_3 (Fig. 1) contains a sixcoordinated indium atom. The angles around the In atom indicate approximate octahedral geometry. The average In-O and In-N distances are 2.108 and 2.261 Å, respectively. There is intermolecular π - π stacking of the ligands (8hydroxyquinolines) in a multidirectional fashion. Such intermolecular stacking was also observed in the Ga Q_3 structure (Wang *et al.*, 1999). The ligands in In Q_3 are stacked in the unit cell, with interplanar distances in the range 3.406–3.428 Å, comparable to 3.35–3.41 Å for Ga Q_3 (Fig. 2). Received 3 April 2003 Accepted 25 April 2003 Online 9 May 2003

m306 Rajeswaran and Jarikov • [In(C₉H₆NO)₃] DOI: 10.1107/S1600536803009231

© 2003 International Union of Crystallography

Printed in Great Britain - all rights reserved

H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.1127P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.59 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -1.05 \text{ e} \text{ Å}^{-3}$

Figure 1

A view of the molecule of the title compound, (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Part of the crystal structure of InQ_3 , illustrating the stacking of 8hydroxyquinoline ligands. Stacking distances between various planes are indicated.

Experimental

 InQ_3 was synthesized according to established methods (Lytle *et al.*, 1973). In Q_3 was chemically purified by washing and recrystallization and subjected to vacuum temperature-gradient sublimation three consecutive times until a purity of 99.9% was achieved. The purity was determined by NMR in d_6 -DMSO. We note that, although the remaining impurities could not be positively characterized, they could consist of different forms, e.g. isomers or polymorphs, of the target compound. In Q_3 was sublimed at 0.6 Torr and the temperature was gradually increased from 533 to 573 K over a period of 1-3 d. It was also characterized by HPLC, LC-MS, and ESIMS, showing results consistent with the structure and purity determined by NMR.

Crystal data

$[In(C_9H_6NO)_3]$	Z = 2
$M_r = 547.26$	$D_x = 1.641 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
$a = 6.1860 (12) \text{\AA}$	Cell parameters from 10 088
b = 13.436(3) Å	reflections
c = 14.725 (3) Å	$\theta = 1.0-26.7^{\circ}$
$\alpha = 65.63 \ (3)^{\circ}$	$\mu = 1.10 \text{ mm}^{-1}$
$\beta = 88.15 \ (3)^{\circ}$	T = 293 (2) K
$\gamma = 83.55 \ (3)^{\circ}$	Needle, yellow
V = 1107.7 (4)	$0.60\times0.07\times0.06~\mathrm{mm}$

Data collection

Nonius KappaCCD diffractometer	2896 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.112$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.8^{\circ}$
(SORTAV; Blessing, 1995)	$h = -7 \rightarrow 7$
$T_{\min} = 0.517, T_{\max} = 0.991$	$k = -16 \rightarrow 15$
11 360 measured reflections	$l = -18 \rightarrow 14$
4647 independent reflections	
Refinement	

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.150$ S = 0.744647 reflections 307 parameters

Table 1

Selected geometric parameters (Å, °).

In1-O3	2.101 (4)	In1-N3	2.250 (5)
In1-O2	2.110 (4)	In1-N1	2.264 (5)
In1-O1	2.112 (4)	In1-N2	2.269 (4)
O3-In1-O2	96.96 (17)	O1-In1-N1	76.89 (17)
O3-In1-O1	101.69 (17)	N3-In1-N1	92.01 (17)
O2-In1-O1	98.33 (17)	O3-In1-N2	163.81 (17)
O3-In1-N3	76.88 (16)	O2-In1-N2	76.89 (16)
O2-In1-N3	93.12 (18)	O1-In1-N2	94.06 (17)
O1-In1-N3	168.54 (17)	N3-In1-N2	88.41 (17)
O3-In1-N1	98.64 (17)	N1-In1-N2	88.45 (17)
O2-In1-N1	164.31 (16)		

The quality of the InQ_3 crystals was not very good, as indicated by a rather high R_{int} value (0.112). There was a minor twin component in the crystals, which was left untreated. During subsequent refinement, positional parameters of H atoms were calculated geometrically and allowed to ride on the C atoms to which they were bonded. In the final difference Fourier map, deepest hole is 0.93 Å from In1.Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001) and Materials Studio (Accelrys, 2001); software used to prepare material for publication: SHELXTL.

References

Accelrys (2001). Materials Studio. Accelrys Inc., San Diego, CA, USA.

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Brinkmann, M., Gadret, G., Muccini, M., Taliani, C., Masciocchi, N. & Sironi, A. (2000). J. Am. Chem. Soc. 122, 5147-5157.
- Bruker (2001). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fujii, I., Hirayama, N., Ohtani, J. & Kodama, K. (1996). Anal. Sci. 12, 153-154.
- Lytle, F. E., Storey, D. R. & Juricich, M. E. (1973). Spectrochim. Acta Part A, 29. 1357–1369.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Tang, C. W. & Van Slyke, S. A. (1987). Appl. Phys. Lett. 51, 913-915.
- Wang, Y., Zhang, W., Li, Y., Ye, L. & Yang, G. (1999). Chem. Mater. 11, 530-532
- Ul-Haque, M., Horne, W. & Lyle, S. J. (1991). J. Crystallogr. Spectrosc. Res. 21, 411-417.